文件名称:
夏季北冰洋浮冰-水道热力学特征现场观测研究.pdf
开发工具:
文件大小: 402kb
下载次数: 0
上传时间: 2019-09-19
详细说明:夏季北冰洋浮冰-水道热力学特征现场观测研究pdf,夏季北冰洋浮冰-水道热力学特征现场观测研究288
22
22
7.8m·s-(82414:44)
25
结束
8510N
80
70
60
50
8450N
20
84°40N
开始
30
84°30N
148°W147°W146°W45°W44°W
153
Fig 1. The cruise trajectory north of Bering Strait of r/v Xuelong and the drift trajectory of ice
1.2
00-2.00m
20m。
Trios
(Ramses ACc-vIs)
320—950nm,
3.3 nm/pixel,
0.3
nm。
(A B)
0.80m
(B)
320-950
70%
Ramses acc-vis
[13]
大气
超声
海冰
传感器a.b
超声
传感器c
海洋
Fig. 2. The observation system for the thermodynamics properties of the floe-lead system
JU
0.1℃
±0.05℃C
(C
(T1)
0.20、0.40、0.70、1.00、1.50、2.00、2.50、3.15、4.15
5.15、6.15、7.15、9.15、11.15、13.15m。
(T2T3)。T2
10.00
1.40
0.18m;T3
45.00m,
0.48m。
3.15、4.15、5.15、6.15、7.15、9.15、11.15
b
0.21
290
22
7.00
0.16m。
0.10m
50
10
5h
822
Ramses acc-vis
825
828
2
20088
827
cm
825
23:0082815:30
320-950nm
0.30.3504
0.450.50.55
0.6
900
8
0.5
700
0.5
B600
0.45
500
0.4
400
0.35
8-26
8-27
日期
Fig 3. Spectral (color plot) and broadband (green line) albedo of the thin ice-covered lead, and the wave-
length with maximum albedo (blue line)
0.38—0.57
0.46(±0.03),
400-1000nm
0.40—0.60
[14]
826
827
0.50;827
828
0.40
,390-460nm
827
680nm()
4(b)
(0.2m)
4(c)
823
24—28
00:00
)。827
(T1),
(4.2m)
(C)
10.2
4
0.4
-1.5d)
0.7
0.6长
二
1.25
3.5
出
紧
lll
334455
12
3
55555555
2
8-23
8-24
8-26
8-27
8-28
日期
(a),T1(b-e)、T2(f)
g
Fig 4. Surface air temperature over the floe (a), the seawater temperatures at Tl(b-e), T2(f) and T3
292
22
4(f)、(g),T
0.016℃·m
3W
T1—T3
[11
2.3
16—66cr
(21cm
(36-66
1.0(±0.3
F
621k
3.11×105J·kg
21(±6)
45
8月22日8月23日
8月24日—8月25日
8月26日8月27日
8月28日
323742475257626772
传感器离浮冰侧面的距离/m
52008822-28
Fig. 5. Variations in the lateral of the floe during 20 to 28 August, 2008
822
293
[15]
826
05.8
51056
105.4
紧
105
105.0
104.8
8-228-238-248-258-268-278-288-29
日期
62008822-29
Fig.6. Variations in the base of the floe 22 to 29 August, 2008
0℃
320950nm
0.46(±0.03),
-1.4℃
21(士6)W·m-2。
(1)
(2)
294
22
Pekka Kosloff
Comiso J C, Parkinson C L, Gersten R, Stock L. Accelerated decline in the Arctic sea ice cover. Geophysical Re-
search letters,2008,35,L1703,doi:10.1029/2007GL031972.
2 Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne J L, Rigor I. Reduced ice thickness in Arctic Transpo-
lar Drift favors rapid ice retreat. Geophysical Research Letters, 2008, 35, L17501, doi: 10. 1029/2008GL034457
3 Lu P, Li Z, cheng b, Lei r, Zhang r. Sea ice surface features in Arctic summer 2008: Aerial observations. Re-
mote Sensing of Environment, 2010, 114: 693--699
4 Perovich D K, Light B, Eicken H, Jones K F, Nghiem S V. Increasing solar heating of the Arctic Ocean and ad-
jacent seas, 1979-2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters, 2007
34,L19505,doi:10.1029/2007GL031480
5 Sorteberg A, Katsov V, Walsh J E, Pavlova, T. The Arctic Surface Energy Budget as Simulated with the IPCC
AR4 AOGCMS. Climate Dynamics, 2007, 29: 131-156
6 Parkinson C L, Washington WM. A large-scale numerical model of sea ice. Journal of Geophysical Research
1979,84(C1):311-337
7 Perovich D K, Richter-Menge J A. From points to poles extrapolating point measurements of sea-ice mass bal-
ance. Annals of Glaciology, 2006, 44:188-192.
8 Lei R, Li Z, Cheng Y, Wang X, Chen Y. A new apparatus for monitoring sea ice thickness based on the magne-
tostrictive-Delay- Line principle. Journal of Atmospheric and Oceanic Technology, 2009, 26(4):818-827
Roger C, Zhang x.
(D),2003,33(2):139—147
10 Perovich D K, Elder B C. Estimates of ocean heat flux at SHEBA. Geophysical Research Letters, 2002, 29(9)
1344,doi:10.1029/2001GL014171
1077—1080
19(4):273-283
13 Nicolaus M, Hudson SR, Gerland S, Munderloh K. A modern concept for autonomous and continuous measure-
ments of spectral albedo and transmittance of sea ice. Cold Regions Science and Technology, 2010, 62: 14-28
14 Perovich DK, Grenfell T C, Light B, Hobbs P V. Seasonal evolution of the albedo of multiyear Arctic sea ice.
Journal of geophysical Research, 2002, 107(C10),8044, doi: 10. 1029/2000JC000438
15 Lei R, Li Z, Cheng B, Zhang Z, Heil P. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica. Journal
of geophysical Research, 2010, doi: 10. 1029/2008JC005223.
16 Yen Y C. Review of thermal properties of snow, ice and sea ice. Cold Regions Research and Engineering Labora-
tory Report 81-10, Hanover, New Hampshire, 1981:1-27
95
OBSERVATIONS ON THE THERMODYNAMICS MECHANISM
OF THE FLOE-LEAD SYSTEM IN THE ARCTIC
OCEAN DURING SUMMER
Lei ruibo, Li zhijun, Cheng Bin, Yang Qinghua and Li na
Polar Research Institute of China, Shanghai 200136, China;
2 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology
Dalian 116024, China;
3 Finnish Meteorology Institute, P.O. Box 33, FI-00931, Helsinki, Finland
4 National Marine Environmental Forecasting Center, Beijing 100081, China
Abstract
The thermodynamics mechanism of the system involving a floe and a small lead in
the Arctic Ocean has been observed during the ice-camp period in the third chinese arc
tic Research expedition from 20 to 28 August, 2008. The field measurements include
surface air temperature above the floe, albedo of the lead, seawater temperatures in the
lead and under the floe, the lateral and bottom mass balance of the floe, The surface air
temperature kept being sub-zero Celsius degree during the observation. Sea ice has com-
menced its annual cycle of growth in response to autumn cooling. The surface of the
lead was frozen-up by 23 August. From then onward, the albedo of the thin ice-covered
lead in band of 320-950nm was 0.46(+0.03), the vertical seawater-temperature gra
dient in the lead, as well as the seawater temperatures both in the lead and under the
floe decreased gradually, while the oceanic heat under the ice was being at a low level
By the end of the observation, the thickness of the investigated floe has reached its an-
nual minimum, while the lateral of the floe was in the melt phase, with mean melt rate
of 1.0(+0.3)cm/d during the measurement, responding to an equivalent latent heat
flux of 2lesponding the urement, malt phase, with the mean 21212121(+6)W/m
The lateral melt of the floe showed the most significant contribution to the sea-ice mass
balance when comparing with the surface and bottom mass balances of the floe for our
investigated region by the end of august
Key words Sea ice, lead, thermodynamics, temperature, thickness, Arctic Ocean
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.