开发工具:
文件大小: 9mb
下载次数: 0
上传时间: 2019-09-04
详细说明:pandas处理参考手册,基于python3案列,本书是一本toolkit,对提高pandas技巧有相当实用性,共1579页。CONTENTS
1What’sNew
1.1v0.15.2( december12,2014).
1.2v0.15.1( November9,2014)
1.3V0.15.0( ctober18,2014).
“·
..14
1.4V0.14.1(July11,2014
41
1.5V0.14.0(May3l,2014)
47
1.6V0.13.1( February3,2014).
74
1.7v0.13.0( January3,2014)
1.8V0.12.0(July24,2013).
...104
1.9V0.11.0( April22,2013)
l15
1.10v0.10.1( January22,2013).
124
1.11V0.10.0( December17,2012)
.130
1.12v0.9.1( ovember14,2012).
141
1.13v0.9.0( October7,2012)
145
1.14V0.8.1(July22,2012),,,,,,,,,,..,.,,,,
147
1.15v0.8.0(June29,2012
...147
1.16v0.7.3( April12,2012
152
17v.0.7.2( March16,2012)...,,
...156
1.18V.0.7.I( February29,2012)
157
1.19V.0.7.0( February9,2012)
157
1.20V.0.6.1(D
13,2011)
1.21v.0.6.0( November25,2011).....,.,......
163
1.22v.0.5.0( October24,2011)
165
1.23 v043 through vo.4.1(September 25-October 9, 2011)
.166
2 Installation
169
2.1 Python version support
.,,,,,,,..,169
2.2 Installing pandas
169
2.3 Dependencies
.172
3 Frequently Asked Questions (FAQ)
175
3. 1 Data Frame memory usage
175
3.2 PeriodIndex Date Array properties and functions
l78
3.3 Frequency conversion
178
3. 4 Plotting
179
3.5 Converting to and from period format
l80
3.6 Treatment of missing data
180
3.7 Resampling with timestamps and periods
180
4 Package overview
4. 1 Data structures at a glance
183
4.2 Mutability and copying of data
4.3 Getting Support
4.4 Credits
4.5 Development Team
.184
4.6 License
184
5 10 Minutes to pandas
187
5.1 Object Creation
187
5.2 Viewing data
..189
5.3 Selection
190
5. 4 Missing data
195
5.5 Operations
5.6Me
,,...198
5. 7 Grouping
····“·
200
5.8 Resh
5.9 Time Series
203
5.10 Cate
204
5.11 Plotting
206
5.12 Getting Data In/Out
207
5.13 Gotchas
20
6 Tutorials
2
6.1 Internal guides
211
6.2 pandas Cookbook
6.3 Lessons for New pandas Users
212
6.4 Practical data analysis with Python
212
6.5 Excel charts with pandas, vincent and xlsx writer
212
6.6 Various Tutorials
1
7 Cookbook
215
7.1 Idioms
215
7.2 Selection
218
7.3 MultiIndexing
222
7.4 Missing Data
226
7.5 Grouping
7.6 Timeseries
235
7.7 Mer
235
7.8
Plotting
236
7.9 Data In/out
237
7.10 Computation
240
7.11 Timedeltas
...241
7.12 Aliasing Axis names
·
242
7.13 Creating Example Data
8 Intro to Data Structures
245
8.1S
245
8. 2 Data frame
...250
8.3 Panel
262
8.4 Panel4D(Experimental
266
8.5 PaneIND(Experimental)
268
9 Essential Basic Functionality
271
9.1 Head and Tail
271
9.2 Attributes and the raw ndarray(s
272
9.3Ac
273
9.4 Flexible binary operations
273
9.5 Descriptive statistics
279
9.6 Function
287
9.7 Reindexing and altering labels
292
9.8 Iterati
299
9.9 Vectorized string method
......303
9.10 Sorting by index and value
304
9.11 Copying
7
9.12 dty
307
9. 13 Selecting columns based on dtype
.313
10 Working with Text Data
317
10.1 Splitting and Replacing Strings
318
10.2 Indexing with, str
····“·
319
10.3 Extracting suhstrings
320
10.4 Method Summary
11 Options and Settings
325
11.1O
325
11. 2 Getting and Setting options
.326
11.3 Setting Startup Options in python/ipython Environment
327
11. 4 Frequently Used options
..327
11.5 List of options
11.6 Number Formatting .........,....
12 Indexing and Selecting Data
335
12.1 Different Choices for Indexing
335
12.2 Deprecations
12. 3 Basics
336
12 4 Attribute access
338
12.5 Slicing ranges
340
12.6 Selection By Label............
341
12.7 Selection By Positi
343
12.8 Setting With Enlargement
347
12.9 Fast scalar value getting and setting
348
12.10
Boolean indexing
349
12.11 Indexing with isin
350
12. 12 The where() Method and Masking
12.13 The query() Method(Experimental)
.,,355
12 14 Duplicate Data
366
12.15 Dictionary-like get () method
...367
12.16 The select() Method
·
12. 17 The lookup()Method
367
12. 18 Index objects
368
12.19 Set/ Reset Index
370
12.20 Returning a view versus a copy
372
13 MultiIndex Advanced Indexing
377
13. 1 Hierarchical indexing(MultiIndex)
377
13.2 Advanced indexing with hierarchical index
382
13. 3 The need for sortedness with MultiIndex
13. 4 Take methods
..393
13.5 Float64Index
395
14 Computational tools
399
14.1 Statistical functions
.399
14.2 Moving(rolling) statistics /moments
403
14.3 Expanding window moment functions
410
14.4 Exponentially weighted moment functions
.412
15 Working with missing dat
415
15.1 Missing data basics
15
15.2 Datetime
,,,,,,,417
15.3 Inserting missing data
:.·
417
15. 4 Calculations with missing data
418
15.5 Cleaning/ filling missing data
419
15.6 Missing data casting rules and indexing
432
16 Group By: split-apply-combine
435
16. 1 Splitting an object into groups
436
16.2 Iterating th
440
16.3 Selecting a group
441
16.4 Aggregation
.,.441
16.5 Transformation
445
16.6 Filtration
449
16. 7 Dispatching to instance method
.450
16.8 Flexible apply
451
16.9 Other useful features
..453
16. 10 Examples
17 Merge, join, and concatenate
46
17.1 Concatenating objects
463
17.2 Database-style Data Frame joining/merging
...472
17.3 Merging with Multi-indexes
481
18 Reshaping and Pivot Tables
485
18.1 Reshaping by pivoting Data Frame objects
..485
18.2 Reshaping by stacking and unstacking
486
18.3 Reshaping by Melt
491
18.4 Combining with stats and GroupBy
.492
18. 5 Pivot tables and cross-tabulations
493
18.6 Tiling
497
18.7 Computing indicator /dummy variables
497
18.8 Factorizing values
.500
19 Time Series/ Date functionality
501
19.1 Time Stamps vs. Time Spans
19.2 Converting to Timestamps
503
19.3 Generating Ranges of Timestamps
504
19.4 atetimelndex
506
19.5 DateOffset objects ...
512
19.6 Time series-related instance methods
521
19.7 Up-and downsampling
19.8 Time Span representation
19.9 Converting between Representations
530
19.10 Representing out-of-bounds spans
·
19.11 Time Zone handling
532
20 Time Deltas
539
20.1 Parsing
539
20.2 Operations
.541
20.3 Reductions
544
20.4 Frequency Conversion
545
20.5 Attribu
546
20.6 TimedeltaIndex
.548
20.7 Resampling
550
21 Categorical Data
551
21.1 Object Creation
551
21.2 Description
21. 3 Working with categorie
21. 4 Sorting and order
21.5 Comparisons
560
21.6 Operations
562
21.7 Data munging·
····“·
21.8 Getting Data In/Out
567
21.9 Missing data
568
21.10 Gotchas
569
22 Plotting
575
22.1 Basic Plotting: plot
575
22.2 Other plots
...578
22.3 Plotting with Missing Data
609
2. 4 Plotting tools
610
22.6 Plotting directly with matplotlib
22.5 Plot formatting
.618
.641
22.7 Trellis plotting interface
642
23 IO Tools(Text, CSV, HDF5,.)
65
23.1 Csv Text files
.652
23.2 JSON
.675
23.3 HTML
683
23. 4 Excel files
691
23.5 Clipboard
23.6 Pickling
...694
23.7 msgpack(experimental)
..695
23. 8 HDF5(Py Tables
.697
23.9 SQL Queries
722
23 10 Google Big Query (Experimental)
730
23.11 Stata Format
731
23. 12 Performance Considerations
.733
24 Remote data access
737
24.1 Yahoo! finance
737
24.2 Yahoo! Finance Options
38
24. 3 Google Fi
244 FRED
740
24.5 Fama/French
741
24.6 World Bank
.741
24.7 Google Analytics
..,,,,,,,.,,,,,,.,,,743
25 Enhancing performance
745
25.1 Cython(Writing C extensions for pandas)
745
25.2 Expression Evaluation via eval()(Experimental
749
26 Sparse data structures
757
26.1 SparseR
759
26.2 Sparselist
26.3 Sparselndex objects
760
27 Caveats and Gotchas
761
27.1 USing If/Truth Statements with pandas
761
27.2 NaN, Integer NA values and NA type promotions
.762
27.3 Integer indexing
764
27. 4 Label-based slicing conventions
..764
27.5 Miscellaneous indexing gotchas·.·,:
.765
27.6 Timestamp lin
76
27.7 Parsing Dates from Text Files
767
27.8 Differences with nump
768
27.9 Thread-safe
768
27.10 HTML Table p
768
27.11 Byte-Ordering Issues
28 rpy2/R interface
28.1 Transferring R data sets into Python
771
28.2 Converting Data Frames into r objects
772
28.3 Calling r functions with pandas objects
.772
28 4 High-level interface to R estimators
29 pandas Ecosystem
29.1 Statistics and Machine Learning
773
29.2 Visualization
.773
29.3 DE
774
29.4 API
......774
29.5 Domain Specific
775
29.6 Out-of-core
775
30 Comparison with R/R libraries
30.1 Base R
777
30.2z0o
783
30.3xs
30.4 ply
30.5 reshape/ reshape
.784
31 Comparison with SQL
789
31.1 SELECT
789
31. 2 WHERE
790
313 GROUP BY
792
31. 4 JOIN
.794
31.5 UNION
796
31.6 UPDATE
797
31.7 DELETE...,.
.797
32 API Reference
32 1 Input/oulput
...799
32.2 General functions
32. 3 Series
866
32. 4 Data frame
1017
32.5 Panel
l181
32.6 Panel4D
1260
32.7 Inde
1306
32.8 Datetimelnde
1337
32.9 Timedeltalndex
1366
3210 GroupBy·
..,,1386
32 1 1 General utility functions
.1410
3 Contributing to panda
l471
33.1 Contributing to the documentation
..1471
34 Internals
1475
34.1 Indexing
1475
35 Release notes
l477
35.1 pandas0.152
.1477
352 pandas0.15.1
.1479
35.3 pandas0.15.0
.1480
35. 4 pandas o 14.1
..1482
35.5 pandas0.14.0
1484
356 pandas0.13.1
.1487
35.7 pandas0.13.0..
.·1490
358 pandas0.12.0
1504
35.9 pandas0.11.0,,
1511
35.10 pandas0.10.1
1517
35.1I pandas 0.10.0
1519
35.12 pandas0.9.1
1524
35.13 pandas0.9.0
1526
35.14 pandas0.8.1
.1531
35.15 pandas0.8.0
1533
35.16 pandas0.7.3
...1538
35.17 pandas.7.2
1539
35.18 pandas0.7.1
.1541
35.19 pandas0.7.0
15
35.20 pandas0.6.1
1548
3521 pandas0.6.0
1550
3522 pandas0.5.0
1554
35.23 pandas0.4.3
1558
35.24 pandas0.4.2
1559
35.25 pandas0.4.1
..1560
3526 pandas0.4.0
156
35.27 pandas0.3.0
1567
Python Module Index
1569
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.