您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学深度学习》组队学习 Task03-05

  2. Task 03 过拟合、欠拟合及其解决方案 本节主要内容有三点: 1.过拟合、欠拟合的概念 2.权重衰减 3.丢弃法 这里对过拟合、欠拟合的概念解释,引入了两个我之前没重视的概念:训练误差和泛化误差。 训练误差(training error),指模型在训练数据集上表现出的误差; 泛化误差(generalization error),指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 欠拟合现象:模型无法达到一个较低的误差。 过拟合现象:训练误差较低但是泛化误
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:43008
    • 提供者:weixin_38601215