您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学深度学习》机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer机器翻译及其相关技术编码器和解码器编码器解码器束搜索贪婪搜索束搜索注意力机制与Seq2Seq模型计算背景变量Transformer 机器翻译及其相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 编码器和解码器 在翻译时,输入句子和输出句子往往不一样长,所以为了处理输入
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:271360
    • 提供者:weixin_38596485
  1. 《动手学深度学习》task4——机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer笔记

  2. 系统学习《动手学深度学习》点击这里: 《动手学深度学习》task1_1 线性回归 《动手学深度学习》task1_2 Softmax与分类模型 《动手学深度学习》task1_3 多层感知机 《动手学深度学习》task2_1 文本预处理 《动手学深度学习》task2_2 语言模型 《动手学深度学习》task2_3 循环神经网络基础 《动手学深度学习》task3_1 过拟合、欠拟合及其解决方案 《动手学深度学习》task3_2 梯度消失、梯度爆炸 《动手学深度学习》task3_3 循环神经网络进阶 《
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:78848
    • 提供者:weixin_38687968
  1. 《动手学深度学习》第二次打卡-学习小队

  2. 一、学习任务: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer Task05:卷积神经网络基础;leNet;卷积神经网络进阶 二、学习要点 2.1 过拟合、欠拟合及其解决方案 过拟合:太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平 欠拟合:样本不够或者算法不精确,测试样本特性没有学到,不具泛化性,拿到新样本后
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:512000
    • 提供者:weixin_38613154
  1. 《动手学深度学习:机器翻译及其相关技术;注意力机制与Seq2Seq模型;Transformer》

  2. 机器翻译 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 训练 def train_ch7(model, data_iter, lr, num_epochs, device): # Saved in d2l model.to(device) optimizer = optim.Adam(model.parameters(), lr
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:28672
    • 提供者:weixin_38744962