您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学pytorch》Task:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络

  2. 一、过拟合和欠拟合 训练误差和测试误差都大,欠拟合 underfitting。模型复杂度不够。 训练误差小于测试误差,过拟合 overfitting。 影响因素之一:训练数据集大小 影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:247808
    • 提供者:weixin_38646659