点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 【机器学习(8)】回归模型的常用评价指标:均方差MSE、均绝对误差MAE、均绝对比例误差MAPE、相关性系数R2
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
【机器学习(8)】回归模型的常用评价指标:均方差MSE、均绝对误差MAE、均绝对比例误差MAPE、相关性系数R2
模型评价:回归模型的常用评价指标 1) 样本误差:衡量模型在一个样本上的预测准确性 样本误差 = 样本预测值 – 样本实际值 2) 最常用的评价指标:均误差方(MSE) 指标解释:所有样本的样本误差的平方的均值 指标解读:均误差方越接近0,模型越准确 3) 较为好解释的评价指标:平均绝对误差(MAE) 指标解释:所有样本的样本误差的绝对值的均值 指标解读:平均绝对误差的单位与因变量单位一致,越接近0,模型越准确 4)
所属分类:
其它
发布日期:2020-12-22
文件大小:52224
提供者:
weixin_38699551