为了解决传统模糊聚类算法无法准确刻画SAR图像强度分布特征以及抗噪性差等问题,提出一种基于可变形状参数Gamma混合模型(GaMM)的区域化模糊聚类SAR图像分割方法.首先,利用Voronoi划分技术将SAR图像完备地划分为若干个Voronoi多边形;然后,假设SAR图像强度服从可变形状参数的GaMM,以GaMM的负对数函数刻画多边形与聚类间的非相似性关系,并结合具有邻域多边形空间约束作用的规则化项定义区域化模糊聚类目标函数;在模型参数求解的过程中,对于无法直接通过导数求解的形状参数及生成点集,