点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 一种基于改进K-means算法的网络流量分类方法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
一种基于改进K-means算法的网络流量分类方法
针对网络流量分类识别系统尤其是实时识别系统对实现复杂度和分类准确率的要求,提出一种复杂度和准确率的折中方案。通过基于密度的思想对K-means算法随机选取初始聚类中心这一关键缺陷进行改进,以及引入聚类有效性判别准则函数确定最终聚类个数实现对算法的全面优化,进而提出基于改进K-means算法的网络流量分类方法,在兼顾K-means算法简单易实现、分类快速特点的同时,提高了分类的准确率。在公开的权威网络流量数据集上的实验表明,与普通K-means方法相比,该方法在网络流量分类方面具有更高的分类准确率
所属分类:
其它
发布日期:2020-10-16
文件大小:561152
提供者:
weixin_38609247
基于自编码器的未知协议分类方法
针对互联网中存在的大量未知协议导致网络管理和维护网络安全十分困难的问题,提出了一种未知协议的分类识别方法。结合自编码器技术和改进的K-means聚类技术针对网络流量实现了未知协议的分类识别。利用自编码器对网络流量进行降维和特征提取,使用聚类技术对降维后数据进行无监督的分类,最终实现对网络流量的无监督识别分类。实验结果表明,所提方法分类效果优于传统的 K-means、DBSCAN、GMM 算法,且具有更高的效率。
所属分类:
其它
发布日期:2021-01-13
文件大小:1048576
提供者:
weixin_38546459