您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 一种基于混淆矩阵的分类器选择方法

  2. 为充分利用分类器的差异性来提高分类器集成的准确率,提出一种分类器选择方法。基本思想是构造所有基分类器的混淆矩阵作为聚类算法的数据对象,根据各聚类中样本的分布选择出一定数量的分类器作为代表,构成新的待集成分类器集合。将该方法应用于Bagging算法的训练过程,通过实验对比,验证了该方法确实可以提高分类器集成性能。
  3. 所属分类:其它

    • 发布日期:2020-05-12
    • 文件大小:266240
    • 提供者:weixin_38551059
  1. 使用超声波的智能手机手势识别.pdf

  2. 利用超声波技术,在智能手机上实现手势识别功能。非常实用的一篇论文徐曾春,吴凯娇,胡平:使用超声波的智能手机手势识别 ()挥手向前 ()挥手向后 ()挥手向左 ()挥手向右 图不同的手势时频图 特征均为先靠近发射源,然后远离发射源,但是细节方 面咯有不同。 实现细节 系统流程 获得反射的超声波数据集 图为系统流程图。首先,通过话筒获取 最初,系统先获得手势运动的时间序列片段,此时 段时间序列,经过快速傅里叶()变换将此序列从时片段已经经过处理,结果如图所示。出于本实验 域信号转换为频域信号。接着搜
  3. 所属分类:Android

    • 发布日期:2019-10-15
    • 文件大小:946176
    • 提供者:xiaokala_2011
  1. MCS HOG功能和基于SVM的手写数字识别系统

  2. 数字识别是扫描文档并将其转换为电子格式的过程中必不可少的元素。 在这项工作中,正在提出一种新的多像元大小(MCS)方法,以利用定向梯度直方图(HOG)特征和基于支持向量机(SVM)的分类器对手写数字进行有效分类。 基于HOG的技术对在相关特征提取计算中使用的像元大小选择很敏感。 因此,一种新的MCS方法已用于执行HOG分析和计算HOG功能。 该系统已经在基准MNIST手写数字基准数据库上进行了测试,使用独立测试集策略已达到99.36%的分类精度。 还使用10折交叉验证策略对分类系统进行了交叉验证
  3. 所属分类:其它

    • 发布日期:2020-06-05
    • 文件大小:1048576
    • 提供者:weixin_38657848
  1. 小样本空间中基于DBN的SAR溢油图像分类研究

  2. SAR已成为漏油监测的重要手段之一。 但是,溢油和相似点的特征是SAR图像上有黑点。 它们具有相似或相同的反向散射系数和灰度值,很容易产生混淆。 针对此问题,本文提出了一种深度学习模型-深度信念网络(DBN),该模型使用DBN来区分漏油,相似物和水。 在实验中,从三个SAR溢油图像中收集了900张图像,以形成一个小的样本空间数据集。 提取了诸如Tamura和灰度梯度共生矩阵之类的两种纹理特征,并选择了具有良好区分特征的特征向量作为模型的输入数据。 最后,将分类结果与传统的机器学习方法(BP,SV
  3. 所属分类:其它

    • 发布日期:2021-03-12
    • 文件大小:1048576
    • 提供者:weixin_38650150