协同过滤推荐算法是推荐系统研究的热点,近年来,在亚马逊、淘宝等商业系统中获得应用。在实际应用过程中,协同过滤推荐面临数据稀疏和准确性低的问题。作为推荐基础的用户产品(项目)矩阵通常非常稀疏(存在大量缺失数据),从而导致推荐结果不准确。文章试图在缺失数据情况下提高协同过滤推荐的准确性,聚焦以下两个方面:(1)用户相似度、产品(项目)相似度计算;(2)缺失数据预测。首先,用增强的皮尔森相关系数算法,通过增加参数,对相似度进行修正,提高用户、产品(项目)相似度计算的准确率。接着,提出一种同时考虑了用