您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. surf图像配准

  2. Speeded Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法。最初由Herbert Bay发表在2006年的欧洲计算机视觉国际会议(Europen Conference on Computer Vision,ECCV)上,并在2008年正式发表在Computer Vision and Image Understanding期刊上。
  3. 所属分类:机器学习

    • 发布日期:2018-04-15
    • 文件大小:546
    • 提供者:qq_41922567
  1. drost2010CVPR中文翻译版.pdf

  2. Model Globally, Match Locally: Efficient and Robust 3D Object Recognition 中文翻译 ;原网页为:http://campar.in.tum.de/pub/drost2010CVPR/drost2010CVPR.pdfHash table I1. n A (m1,m2) F i.11 m;, (Key to (ms, m6) F1=m2 hash table 图2.(a)两个定向点的点对特征F.分量F1被设置为点F2和F3与法
  3. 所属分类:机器学习

    • 发布日期:2019-07-16
    • 文件大小:1048576
    • 提供者:qq_28250697
  1. 基于Walsh-Hadamard投影的快速Nonlocal-Means图像去噪.pdf

  2. NLM改进论文,可供算法工程师参考,Walsh-Hadamard投影。382 宇航学报 第32卷 NL- means模型利用观测图像中其它像素点的窗口内,将算法的计算复杂度降为o(m2·n2t2) 加权和来表示当前点图像像素值的估计,即2-1 即便如此, NL-means去噪算法的计算量还是比较 X()=NL()=∑o(i,Y()(2)大,特别是比较窗口和搜索窗口的尺寸较大时,算法 权值o(i,j代表了像素点i和j的相关性, Buade速度较慢。 提出使用以像素点和j为中心的图像块的欧式距 由式
  3. 所属分类:图像处理

    • 发布日期:2019-07-02
    • 文件大小:900096
    • 提供者:irwin0112
  1. 基于多维混合柯西分布的点云配准

  2. 为提高三维点云在数据随机缺失和噪声干扰等复杂情况下的配准精度, 提出一种基于多维混合柯西分布(MMC)的点云配准方法。将点云数学模型扩展为MMC模型, 求解模型各参数, 并构造出特征四面体,以优化旋转矩阵与平移向量; 通过最大期望算法分别求出目标点云和待配准点云在MMC模型下的数据中心、协方差矩阵和权重的值。仿真与实验数据表明:与几种常用的算法相比, MMC算法即使在点云数据存在遮挡、缺失, 大小不一致, 含随机噪声, 且具有无序性的条件下, 也能精确配准, 且具有良好的稳健性。
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:20971520
    • 提供者:weixin_38739919
  1. 基于快速仿射模板匹配和改进仿射迭代最近点算法的人脸稳健精确仿射配准

  2. 提出了一种仅基于单个模板的人脸仿射配准方法。首先, 为了克服人脸仿射变换而产生的局部形变, 引入颜色特征来平衡模板人脸和目标人脸之间的颜色相似性和形状错配率, 进而提出了一种基于颜色特征的人脸粗搜索算法。接着, 采用人脸粗搜索算法得到的仿射变换作为初始约束, 建立上步仿射约束下的人脸形状精确配准算法。在算法的每一步迭代中, 利用前一步迭代得到的仿射变换, 建立最近点的对应关系, 并利用前步仿射约束下的目标函数求解新的仿射变换。本文算法成功解决了旋转、缩放和噪声干扰情况下人脸形状难以配准的问题。与
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:13631488
    • 提供者:weixin_38713393
  1. 改进的RANSAC算法在三维点云配准中的应用

  2. 传统随机抽样一致性(RANSAC)算法只能进行粗配准, 且配准效率低。针对该问题提出一种改进的RANSAC快速点云配准算法。该算法将内部形态描述子算法和快速点特征直方图(FPFH)算法相结合, 得到特征描述子, 然后采用预估计和三维栅格分割法改进RANSAC算法, 最后与传统配准算法采样一致性初始配准算法进行比较。实验结果表明, 本文算法能快速精确地剔除误匹配点, 进行仿射变换矩阵求解, 无需二次配准。本文算法相较于传统配准算法有很大优势, 在大规模三维点云配准中具有很好的稳健性, 并且在保证精
  3. 所属分类:其它

    • 发布日期:2021-02-13
    • 文件大小:4194304
    • 提供者:weixin_38502929
  1. 一种稳健的特征点配准算法

  2. 为了能准确快速提取特征和可靠匹配特征点对,提出一种稳健的基于特征点的配准算法。首先改进了Plessey角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度归一化互相关(Normalized cross correlation, NCC),通过双向最大相关系数匹配的方法提取出初始特征点对,用随机采样符合法(Random sample consensus, RANSAC)来剔除伪特征点对,实现特征点对的精确匹配。最后用正确匹配特征点对实现图像的配准。实验表明,该方法能够快速准确地提取两幅
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:1048576
    • 提供者:weixin_38734037
  1. 基于改进正态分布变换算法的点云配准

  2. 正态分布变换(NDT)算法是一种应用在同时定位和地图生成(SLAM)中的点云配准算法。针对地面激光扫描(TLS)数据的特点,改进了NDT 算法,提出了一种基于SURF 的NDT 配准算法,使之能应用在TLS 中。该算法首先建立点云和图像间的映射关系把点云影像化;利用加速稳健特征(SURF)算法提取图像的特征点并找出特征点对;根据映射关系找到相应的三维特征匹配点,求出变换矩阵,完成点云初始配准。在NDT 算法中,设置初始矩阵为单位矩阵,对点云体素化并使用概率分布函数对点云精细配准。实验结果证明,该
  3. 所属分类:其它

    • 发布日期:2021-02-05
    • 文件大小:1021952
    • 提供者:weixin_38604916
  1. 基于T分布混合模型的多光谱人脸图像配准

  2. 为了降低多光谱人脸图像中出现的非刚性形变、噪声和离群点等因素对配准结果的准确性和稳健性的影响,提出一种综合考虑特征点的空间几何结构和局部形状特征两方面信息的多光谱人脸图像配准方法。所提方法首先通过基于内部距离的形状上下文描述子来表述点集的局部特征信息,建立可见光和红外图像相似性测度函数。然后利用Student''s-T分布混合模型来表示图像特征点集配准过程中变换模型估计问题,并采用期望最大化算法对模型进行求解。仿真数据表明在点集存在非刚性形变、噪声和离群点的情况下,所提方法仍可以实现点集间的精确
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:11534336
    • 提供者:weixin_38688956
  1. 加速分割特征优化的图像配准方法

  2. 提出一种加速分割特征算法与快速视网膜关键点描述子(FREAK)结合的图像配准算法。首先对图像建立尺度空间, 并在此基础上利用加速分割特征优化算法检测图像特征点, 结合Harris算法对特征点进行过滤, 保留强角点用于图像配准; 其次结合 FREAK对检测的特征点进行描述, 计算其特征向量, 采用汉明距离替代传统的欧氏距离进行图像匹配, 并采用随机采样一致性方法精炼匹配点来避免由于噪声和物体位置移动等原因产生的误匹配。从配准精度和配准时间两个方面, 对本文方法与尺度不变特征变换算法、二进制稳健独立
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:7340032
    • 提供者:weixin_38501610