目前构建基于机器学习的室内可见光定位模型主要依赖于光电二极管和指纹数量,为了降低指纹采集的复杂度,提高定位精度,提出一种基于指纹矩阵稀疏重构的室内三维可见光定位算法。该算法利用极限学习机训练稀疏采样点,采用奇异值分解和交替方向乘子法求解稀疏指纹矩阵的重构问题。该算法可以有效降低指纹的采样率,同时可以基于极限学习机算法较强的泛化能力提高定位速度和定位精度。在此基础上,由于可见光的多径反射等因素的影响,定位区域的边界定位误差大于内部定位误差,通过引入一种边界修正定位算法,可以有效降低边界定位误差。仿