您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 不平衡数据学习综述【附4篇经典论文】.zip

  2. 以下附上不平衡数据学习的4篇综述论文,非常有阅读价值。针对不平衡数据集解决方法主要分为两个方面:第一种方案主要从数据的角度出发,主要方法为抽样,既然我们的样本是不平衡的,那么可以通过某种策略进行抽样,从而让我们的数据相对均衡一些;第二种方案从算法的角度出发,考虑不同误分类情况代价的差异性对算法进行优化,使得我们的算法在不平衡数据下也能有较好的效果。
  3. 所属分类:机器学习

    • 发布日期:2020-02-07
    • 文件大小:3145728
    • 提供者:syp_net
  1. 不均衡数据分类算法的综述

  2. 传统的分类方法都是建立在类分布大致平衡这一假设基础上的,然而实际情况中,数据往往都是不均衡的。因此,传统分类器分类性能通常比较有限。从数据层面和算法层面对国内外分类算法做了详细而系统的概述。并通过仿真实验,比较了多种不平衡分类算法在6个不同数据集上的分类性能,发现改进的分类算法在整体性能上得到不同程度的提高,最后列出了不均衡数据分类发展还需解决的一些问题。
  3. 所属分类:其它

    • 发布日期:2021-02-20
    • 文件大小:1048576
    • 提供者:weixin_38601311
  1. 不平衡数据分类方法综述

  2. 随着信息技术的快速发展,各领域的数据正以前所未有的速度产生并被广泛收集和存储,如何实现数据的智能化处理从而利用数据中蕴含的有价值信息已成为理论和应用的研究热点.数据分类作为一种基础的数据处理方法,已广泛应用于数据的智能化处理.传统分类方法通常假设数据类别分布均衡且错分代价相等,然而,现实中的数据通常具有不平衡特性,即某一类的样本数量要小于其他类的样本数量,且少数类具有更高错分代价.当利用传统的分类算法处理不平衡数据时,由于多数类和少数类在数量上的倾斜,以总体分类精度最大为目标会使得分类模型偏向于
  3. 所属分类:其它

    • 发布日期:2021-01-12
    • 文件大小:1048576
    • 提供者:weixin_38550334