点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 亚纯李代数的颜色运动学对偶和Drinfeld对偶
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
亚纯李代数的颜色运动学对偶和Drinfeld对偶
颜色运动学对偶性表明,杨米尔斯(YM)理论具有一些隐藏的李代数结构。 到目前为止,除了在自我对偶领域中取得一些进展外,这种结构还阻碍了人们的理解。 我们证明YM Feynman规则背后确实存在一个Lie代数。 我们发现的李代数是向量场的李代数的Drinfeld倍数。 更具体地说,我们证明遵循YM Feynman规则的运动学分子满足Jacobi身份的一种形式,因为YM三次顶点定义的括号的Jacobiator被YM四次顶点的贡献所抵消。 然后,我们证明这种类似于Jacobi的身份实际上是Drinfe
所属分类:
其它
发布日期:2020-04-21
文件大小:708608
提供者:
weixin_38696143