您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 伯禹学习平台打卡(二)

  2. ** TASK 03 ** 1.过拟合、欠拟合及其解决方案 (1)过拟合、欠拟合的概念 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 (2)权重衰减 权重衰减等价于 L2L2 范数正则化(regularization
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:1048576
    • 提供者:weixin_38747233
  1. 伯禹学习平台第一次打卡 task05

  2. 卷积神经网络 填充 填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。 图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算 如果原输入的高和宽是nhn_hnh​和nwn_wnw​,卷积核的高和宽是khk_hkh​和kwk_wkw​,在高的两侧一共填充php_hph​行,在宽的两侧一共填充pwp_wpw​列,则输出形状为: (nh+ph−kh+1)×(nw+pw−kw+1) (n_h+p_h-k_h+1)\times
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:147456
    • 提供者:weixin_38526208