您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 使用低秩矩阵恢复的高光谱图像恢复

  2. 高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验
  3. 所属分类:其它

    • 发布日期:2021-03-16
    • 文件大小:1048576
    • 提供者:weixin_38685857
  1. 使用低秩矩阵恢复的高光谱图像恢复

  2. 高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验
  3. 所属分类:其它

    • 发布日期:2021-03-30
    • 文件大小:4194304
    • 提供者:weixin_38747917