点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 使用平滑的L0范数算法恢复相关行稀疏信号
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
使用平滑的L0范数算法恢复相关行稀疏信号
分布式压缩感知(DCS)是一个新兴的研究领域,它利用了信号内和信号间的相关性。 本文关注于稀疏信号的恢复,该稀疏信号可以被建模为在同一位置集具有不同非零系数的联合稀疏模型(JSM)2。 利用平滑的L0范数算法将非凸且难处理的混合L2,0范数优化问题转换为可解决的问题。 与一系列的单测量矢量问题相比,该方法可以充分利用信号间的相关性,从而获得更好的重建性能。 仿真结果表明,在无噪声和高噪声情况下,我们的算法均优于L1,1规范优化,并且与L1,2恢复相比,其对热噪声的鲁棒性更高。 此外,借助利用
所属分类:
其它
发布日期:2021-03-17
文件大小:336896
提供者:
weixin_38649091