您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 具有低秩和局部约束矩阵估计的链路预测

  2. :在大数据时代,互联网社会网络和其他复杂网络中的链接预测问题研究成为热门领域。链接预测问题中,通常使使用相似性矩阵来表示网络中任意变量之间存在链接的可能性,因此相似性矩阵的计算是链接预测中至关重要的一步。是基于已知网络中数据的分析,通过网络潜在结构设计机器学习算法的构造相似性矩阵。在层次低秩的网络结构假设下,结合网络中节点特征的局部约束,提出了一种基于数据的链接预测优化算法,并针对复杂网络数据链接预测问题设计了可扩展的分治方法,并通过分布式环境中对大规模数据进行转化。通过在多个真实数据集上的实验
  3. 所属分类:其它

    • 发布日期:2021-03-14
    • 文件大小:650240
    • 提供者:weixin_38636655