对Grassberger熵进行改进,采用改进的Grassberger熵计算信息增益,选择分裂节点的最优分裂属性训练随机森林分类器,利用经过训练的随机森林分类器预测选择性搜索生成的子窗口是否包含目标。对每个训练样本及子窗口提取1个归一化梯度幅值、3个LUV颜色通道和6个梯度方向直方图的特征。在SenseAndAvoid数据集上测试了所提方法的性能,取得了73.2%的平均检测准确率。结果表明:安全包络范围内的平均检测准确率高于98%。利用改进的Grassberger熵计算信息增益,能提高目标检测的准