就线性定常/时变系统以及非线性系统,依据特征模型理论,给出动态系统的一阶特征模型.其特征参数随时间变化,即以一阶时变差分方程描述受控系统的动态特性;与二阶和三阶特征模型相比较,一阶模型具更少参数.为解决由一阶特征模型描述的系统的控制问题,提出基于遗忘因子迭代学习辨识的自适应迭代学习控制方法.迭代学习辨识适于时变参数的估计,它允许被估计参数随时间快速变化,抑或突变.以直线伺服系统的位置跟踪控制为例,给出一种基于特征模型与LQ最优控制策略的自适应迭代学习控制方案.仿真与实验结果表明,提出的控制方案能