您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 伯禹 动手学深度学习 打卡06之卷积神经网络基础

  2. 卷积神经网络基础 二维卷积层 本文介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关计算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:336896
    • 提供者:weixin_38720322
  1. 动手学深度学习打卡之二。

  2. 第二次打卡内容(2月15日-18日) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) 感觉内容比较多啦,终于看完了。。 下面附上一些学习中查到的资料。 Deep Learning(深度学习)学习笔记整理系列之(一) b站上动手学深度学习 开学前要学完哦!!加油!! 作者:poppy917
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:28672
    • 提供者:weixin_38506835