您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 即将取代RNN结构的Transformer

  2. 本文来自于segmentfault,文章介绍了Transformer的整体结构、attention计算过程等相关内容。上图是经典的双向RNN模型,我们知道该模型是通过递归的方式运行,虽然适合对序列数据建模,但是缺点也很明显“它无法并行执行”也就无法利用GPU强大的并行能力(这里插句题外话,正因为GPU强大的并行能力,所以batch_size等于1和等于200运算时间基本差不多),再加上各种门控机制,运行速度很慢。一般而言,编码器输出编码向量C作为解码器输入,但是由于编码向量C中所有的编码器输入值
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:935936
    • 提供者:weixin_38502292
  1. 即将取代RNN结构的Transformer

  2. 本文来自于segmentfault,文章介绍了Transformer的整体结构、attention计算过程等相关内容。上图是经典的双向RNN模型,我们知道该模型是通过递归的方式运行,虽然适合对序列数据建模,但是缺点也很明显“它无法并行执行”也就无法利用GPU强大的并行能力(这里插句题外话,正因为GPU强大的并行能力,所以batch_size等于1和等于200运算时间基本差不多),再加上各种门控机制,运行速度很慢。一般而言,编码器输出编码向量C作为解码器输入,但是由于编码向量C中所有的编码器输入值
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:935936
    • 提供者:weixin_38506798