您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 卷积神经网络基础与经典模型-Task4

  2. 1. 卷积神经网络基础 从本节讲解才知道,卷积神经网络中的Conv2d函数中,实现的滤波器与图像element-wise相乘并累加其实是互相关运算,二维互相关的解释如下: 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:156672
    • 提供者:weixin_38727579