点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 卷积递归深度学习在3D物体分类上的应用.doc
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
卷积递归深度学习在3D物体分类上的应用.doc
3D传感技术的最新进展使人们有可能轻松地拍摄彩色和深度信息并存的图片,以提高物体识别的图像。目前,大多数方法对于这个新的3D方式依赖于非常精心设计的特征。引入一个基于卷积和递归神经网络(CNN和RNN)组合的模型,用于特征学习和RGB-D图像分类。CNN层用于学习低水平的平移不变性的特征,然后作为多个固定树RNN的输入,以组成高阶特征。RNN可以被看作是结合卷积,并汇集到一个高效的、分层的操作。我们的主要结果是,甚至随机权重的RNN也组成强大的特征集。我们的模型在标准RGB-D对象集上获得了较好
所属分类:
深度学习
发布日期:2020-04-25
文件大小:592896
提供者:
weixin_39164435