针对函数全局优化问题,提出了一种自适应压缩因子粒子群优化算法。研究的结果是对粒子群优化算法定义了一个与迭代步有关的压缩因子,随着迭代步不断增大压缩因子逐渐减小,使得在算法初期,压缩因子较大,提高算法的全局搜索能力,在算法后期,压缩因子较小,提高算法的局部搜索能力,另外,把差分进化算法中的交叉与变异思想引入到该粒子群优化算法中,改善了粒子的多样性。最后把算法应用到两类测试问题中,并与其他粒子群优化算法进行比较分析,数值结果表明,算法是可行的、有效的。该成果对全局优化问题的求解具有一定的参考价值和指