针对传统图像处理算法难以快速、准确识别轮对踏面缺陷的问题,提出一种采用双深度神经网络对轮对踏面缺陷进行检测的算法。该双网络分为踏面提取网络与缺陷识别网络。根据踏面为大目标的特点,分析与测试SSD网络,并用该网络提取轮对图像中的踏面区域。为提高踏面缺陷识别效率,在提取出踏面图像后,针对踏面缺陷属于中、小目标的特点,对YOLOv3网络结构进行优化得到M-YOLOv3。实验测试表明:提取踏面区域时,SSD算法的精度均值(AP)最高,达99.8%;识别踏面缺陷时,M-YOLOv3的AP达89.9%,相较