针对常见去噪方法容易造成特定区域过度平滑、奇异结构残余噪声以及产生阶梯效应和对比度损失等问题,提出一种自适应非局部数据保真项和双边总变分的图像去噪模型,建立了自适应非局部正则化能量泛函和相应的变分框架。首先,对噪声图像利用自适应权值的非局部均值求得数据拟合项; 其次,引入双边总变分正则化项,利用正则化系数来适度平衡数据拟合项和正则化项的影响; 最后,通过能量函数最小化对不同的噪声统计快速求得最优解,从而达到降低残余噪声并纠正过度平滑的目的。通过理论分析和针对模拟噪声图像与真实噪声图像的实验结果表