您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于一类支持向量机的冠脉病变检测方法

  2. 针对冠脉病变检测算法普遍存在的异常截面识别率低、无法排除特殊结构影响等问题,提出了一种基于一类支持向量机(OCSVM)的冠脉病变检测方法,并使用冠脉面重采样和基于最大互信息的特征选择方法提高了算法识别正确率。该方法首先基于梯度通量对冠脉源截面进行三次样条插值重采样,然后构造出截面的多尺度特征,接着使用最大互信息结合冗余度去除进行特征选择,最后使用特征数据训练OCSVM完成冠脉病变检测。实验结果显示,在1128个冠脉截面数据的测试结果中,本算法在完全识别异常截面的情况下对健康截面的识别正确率达到了
  3. 所属分类:其它

    • 发布日期:2021-02-07
    • 文件大小:6291456
    • 提供者:weixin_38553466