点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于主成分分析和线性判别分析的高光谱数据相关矢量机分类
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于主成分分析和线性判别分析的高光谱数据相关矢量机分类
相关性向量机(RVM)是一种机器学习技术,它使用贝叶斯推理来获取回归和概率的简约解。 与支持向量机(SVM)相比,RVM的贝叶斯公式避免了SVM的自由参数集。 然而,当应用于高光谱数据时,RVM的分类精度不高。 提出了一种基于RVM的分类方法。 该方法结合了主成分分析(PCA)和线性判别分析(LDA)以减少高光谱数据的维数。 首先,将PCA用于一维降维,并获得非奇异的类内散布矩阵。 其次,将LDA应用于第二维降维,大大减少了计算量。 最后,将相关向量机模型应用于遥感图像分类。 本文使用了1992
所属分类:
其它
发布日期:2021-03-07
文件大小:340992
提供者:
weixin_38731199