您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于主成分分析的齿轮箱故障特征融合分析

  2. 为有效降低齿轮箱故障特征的维数并提高诊断准确率,提出了基于主成分分析法的齿轮箱故障特征融合方法,并结合支持向量机和BP神经网络对诊断的准确率进行了分析。以齿轮箱中不同裂纹齿轮为对象,选取能够表征齿轮箱故障状态的时域、频域和基于希尔伯特变换的36个特征,提取累积贡献率达到95%以上的主成分并输入支持向量机分类器中进行分类识别,用BP神经网络分类器进行结果的比较分析。结果表明,采用主成分分析法与支持向量机相结合的方法,既能降低特征维数,降低计算的复杂性,又能有效地表征齿轮箱的运行状态,识别不同裂纹水
  3. 所属分类:其它

    • 发布日期:2021-03-10
    • 文件大小:88064
    • 提供者:weixin_38618746