您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于人工神经网络的HEMT器件参数提取方法研究

  2. 研究了利用人工神经网络对不同频带、栅宽的砷化镓高电子迁移率晶体管进行散射参数和噪声参数提取,基于两个神经网络分别对两组散射参数和噪声参数进行训练学习,比较不同隐含层和神经元数目得出平均相对误差和均方误差,找到对应散射参数和噪声参数神经网络的最佳的隐含层数和神经元数目是8-8-6和6-4。测试结果表明,散射参数平均相对误差的平均值为2.79%,噪声参数平均相对误差的平均值为2.05%,与常规单个神经网络结构相比,在平均相对误差方面提高了31.3%,表明该模型具备更好的精度和可靠性,十分适用于宽禁带
  3. 所属分类:其它

    • 发布日期:2020-10-15
    • 文件大小:573440
    • 提供者:weixin_38624183