您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 图像__视频__其他.zip

  2. 利用深度卷积网络的图像超分辨率 Image Super-Resolution Using Deep Convolutional Networks (2016) 作者C. Dong et al. 摘要:我们提出了一种用于单图像超分辨率(SR)的深度学习方法。 我们的方法直接学习低/高分辨率图像之间的端对端映射。 该映射被表示为以低分辨率图像作为输入并输出高分辨率图像的深度卷积神经网络(CNN)。 我们进一步表明,传统的基于稀疏编码的SR方法也可以看作是一个深层卷积网络。 但不同于传统的分别处理每
  3. 所属分类:其它

    • 发布日期:2017-02-22
    • 文件大小:22020096
    • 提供者:oscer2016
  1. 基于优化卷积神经网络的图像超分辨率重建

  2. 与以往两类单帧图像的超分辨率重建方法相比,卷积神经网络超分辨率(SRCNN)技术以其端对端的映射架构大幅提高了运行效率与复原精准度,然而网络的层数限制以及收敛性能使得部分图像的恢复效果不及基于样例的重建方法。针对网络优化问题,提出了一种将粒子群优化(PSO)算法与SRCNN相结合的方法,利用PSO算法对网络权重进行初始化,同时结合梯度下降(GD)算法对权值进行修正,使得PSO算法的全局搜索能力与GD算法的局部寻优能力相融合。分别对set5、set14数据集和雾霾天气下模糊图片进行对比实验,结果表
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:12582912
    • 提供者:weixin_38716563
  1. 基于深层残差网络的加速图像超分辨率重建

  2. 针对目前卷积神经网络的超分辨率算法存在卷积层数少、模型简单、计算量大、收敛速度慢以及图像纹理模糊等问题, 提出了一种基于深层残差网络的加速图像超分辨率重建方法, 该方法在提高图像分辨率的同时加快收敛速度。设计更深的卷积神经网络模型来提高精确度, 通过残差学习并且使用Adam优化方法使网络模型加速收敛。在原始低分辨率图像上直接进行特征映射, 只在网络的末端引入子像素卷积层, 将像素进行重新排列, 得到高分辨率图像。实验结果表明, 在set 5, set 14, BSD100测试集上, 所提算法的峰
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:11534336
    • 提供者:weixin_38621441