您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 中南大学计算机学院梁毅雄老师授课-数字图像处理-考试要点答案整理

  2. 中南大学计算机学院梁毅雄老师授课考试要点答案整理。此文档受众:中南大学!计算机学院!梁毅雄老师授课学生!数字图像处理!中南大学计算机学院梁毅雄老师授课考试重点整理 2019.07.03 Canny边绿检测算法 基本原理 图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确 定边缘的位置。 从数学上表达了三个准则[信噪比准则(低错误率)、定位精度准则、单边缘 响应准则」,并寻找表达式的最佳解 属于先平滑后求导的方法 步骤 1)使用高欺滤波器,以平滑图像,滤除噪声。 2)计算图像中每个
  3. 所属分类:讲义

    • 发布日期:2019-07-04
    • 文件大小:5242880
    • 提供者:sinat_31857633
  1. 基于轮廓模型的单应识别优化算法

  2. 提出了基于轮廓模型的复杂背景弱纹理目标单应优化方法。算法在随机抽样一致(RANSAC)框架下实现了初始变换的求解,通过优化法向距离实现了单应的优化求解。为了快速稳健地求解初始单应,算法随机选取三条满足一定几何约束的直线段进行假设变换关系的求解,通过选取使得投影误差最小的变换关系作为单应初值。为了解决复杂背景条件下模型-图像对应错误引起的优化失败问题,在模型-图像点匹配阶段,算法为每个采样点保留多个图像点对应,同时在对样本点进行加权过程中,该算法综合考虑了样本点自身的属性和样本点同周围点的关系,有
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:4194304
    • 提供者:weixin_38566180
  1. 动态背景下基于帧间差分与模板匹配相结合的运动目标检测

  2. 基于图形处理器单元(GPU)提出了一种帧间差分与模板匹配相结合的运动目标检测算法。在CUDA-SIFT(基于统一计算设备架构的尺度不变特征变换)算法提取图像匹配特征点的基础上,优化随机采样一致性算法(RANSAC)剔除图像中由于目标运动部分产生的误匹配点,运用背景补偿的方法将静态背景下的帧间差分目标检测算法应用于动态情况,实现了动态背景下的运动目标检测,通过提取目标特征与后续多帧图像进行特征匹配的方法最终实现自动目标检测。实验表明该方法对运动目标较小、有噪声、有部分遮挡的图像序列具有良好的目标检
  3. 所属分类:其它

    • 发布日期:2021-01-31
    • 文件大小:695296
    • 提供者:weixin_38725260
  1. 基于优化采样的RANSAC图像匹配算法

  2. 视觉定位系统中,图像匹配的精度直接影响整个定位系统的精度,针对图像匹配中存在的误匹配率较高等问题,提出了一种基于多层次FAST(MFAST)和优化采样的随机采样一致性(RANSAC)算法的图像匹配算法。首先采用MFAST算法提取角点,运用加速稳健特征算法确定主方向生成特征描述符;然后在基于RANSAC的框架下,利用改进的加权K-最近邻分类方法选取新的样本集合计算出最佳模型参数,从而剔除误匹配点。在真实场景下进行实验,结果表明,与传统算法相比,该算法能高效剔除误匹配点,提高图像的匹配精度,且满足实
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:4194304
    • 提供者:weixin_38656395