您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于免疫神经网络模型的瓦斯浓度智能预测

  2. 将免疫算法与神经网络理论相结合,提出免疫神经网络预测模型以预测采煤工作面瓦斯浓度,并对如何处理时间序列的数据模式问题进行研究.引入延迟单元,将原始输入样本转换为具有延迟特征的新样本,采用延迟算子的输出样本施加到网络预测模型,可以获得浓度时段变幅的信息,这对于提高网络对瓦斯扩散过程的拟合精度和预测精度十分有效.结合某矿井瓦斯预报实例,经过与现场实测值相比较,最大预测误差为6.86%,最小预测误差为2.36%,平均误差为4.61%,所建模型精度的拟合值与预测值都与实际数据吻合得较好,各测点的误差值均
  3. 所属分类:其它

    • 发布日期:2020-07-18
    • 文件大小:994304
    • 提供者:weixin_38620267