您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于分层池的深度卷积神经网络用于人类动作识别

  2. 基于视频的人体动作识别是计算机视觉中一个活跃且具有挑战性的话题。过去几年,深度卷积神经网络(CNN)成为最受欢迎的方法,并在HMDB-51和UCF-101等多个数据集上达到了最先进的性能。 由于每个视频都具有多种帧级功能,因此如何组合这些功能以获得良好的视频级功能成为一项艰巨的任务。 因此,本文提出了一种基于深度卷积神经网络(SP-CNN)的新颖的动作识别方法-分层池化。 该过程主要由五个部分组成:(i)在目标数据集上微调预训练的CNN,(ii)帧级特征提取; (iii)用于减少特征维数的主成分
  3. 所属分类:其它

    • 发布日期:2021-03-15
    • 文件大小:1048576
    • 提供者:weixin_38560797