您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于半监督高斯混合模型核的支持向量机分类算法

  2. 提出了一种基于高斯混合模型核的半监督支持向量机(SVM)分类算法.通过构造高斯混合模型核SVM分类器提供未标示样本信息,使得SVM算法在学习标示样本信息的同时,能够兼顾整个训练样本集合的聚类假设.实验部分将该算法同传统SVM算法、直推式支持向量机(TSVM)以及随机游走(RW)半监督算法进行分类性能比较,结果证明该算法在拥有较少标示样本训练的情况下分类性能也有所提高且具有较高的鲁棒性.
  3. 所属分类:其它

    • 发布日期:2021-02-20
    • 文件大小:807936
    • 提供者:weixin_38697123