点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于卷积神经网络的深度图超分辨率重建
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于双通道卷积神经网络的深度图超分辨研究
目前直接获取的深度图受其成像原理及硬件设备等因素的限制,存在分辨率低、边缘信息丢失等缺点,极大地影响了深度图的应用。针对这一问题,提出基于双通道卷积神经网络的深度图超分辨率重建模型。该模型由深、浅两个通道组成,21层的深层通道通过联合卷积与反卷积,结合跳跃连接与多尺度理论,实现深度图细节特征的快速学习;3层的浅层通道用于学习深度图的轮廓特征;最后融合深、浅两个通道,将细节与轮廓相结合,实现由低分辨率深度图到高分辨率深度图的端到端的学习。该模型充分利用卷积神经网络的学习能力自主提取深度图的有效特征
所属分类:
其它
发布日期:2021-02-12
文件大小:3145728
提供者:
weixin_38699613
基于卷积神经网络的深度图超分辨率重建
针对传统深度图超分辨率重建算法需要人工提取特征、计算复杂度较高且不容易得到合适表示特征的问题, 提出一种基于卷积神经网络(CNN)的深度图超分辨率重建算法。该算法不需要提前对特定的任务从图像中提取具体的手工特征, 而是模拟人类的视觉系统对原始深度图进行层次化的抽象处理以自主地提取特征。该算法直接进行从低分辨率深度图到高分辨率深度图的映射学习。映射由7个卷积层和1个反卷积层联合实现。卷积操作学习丰富的图像特征, 而反卷积实现上采样重建高分辨率的深度图。Middlebury RGBD数据集的实验结果
所属分类:
其它
发布日期:2021-02-06
文件大小:4194304
提供者:
weixin_38513794