您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于卷积神经网络的生物式水质监测方法

  2. 生物式水质监测通常是先通过提取水生物在不同环境下的应激反应特征,再进行特征分类,从而识别水质。针对水质监测问题,提出一种使用卷积神经网 (CNN)的方法。鱼类运动轨迹是当前所有文献使用的多种水质分类特征的综合性表现,是生物式水质分类的重要依据。使用 Mask-RCNN 的图像分割方法,取鱼体的质心坐标,并绘制出一定时间段内鱼体的运动轨迹图像,制作正常与异常水质下两种轨迹图像数据集。融合 Inception-v3网络作为数据集的特征预处部分,重新建立卷积神经网络对 Inception-v3 网络提
  3. 所属分类:其它

    • 发布日期:2021-03-09
    • 文件大小:1048576
    • 提供者:weixin_38741531