您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于卷积神经网络的短切毡缺陷分类

  2. 基于卷积神经网络,提出了短切毡缺陷分类的方法。通过旋转、平移和翻转对数据集进行扩充,解决了小数据样本在深度卷积神经网络中的过拟合问题;利用迁移学习的思想加速网络收敛,提高了网络的泛化能力;对比了不同网络结构并选择较好的网络进行数据集验证。结果表明,所提方法能够实现短切毡缺陷的有效分类,准确率为93%。
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:7340032
    • 提供者:weixin_38635794