点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于卷积神经网络结合改进Harris-SIFT的点云配准方法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于卷积神经网络结合改进Harris-SIFT的点云配准方法
针对传统点云配准方法在处理大型点云模型时存在计算量大、效率低和移动扫描配准实时性较差等问题,提出基于卷积神经网络结合改进Harris-SIFT(Scale Invariant Feature Transform)的点云配准方法。首先改进Harris-SIFT算法,使其可以提取三维空间中点云模型的稳定关键点。进而将关键点的加权邻接矩阵作为卷积神经网络的输入特征图,实现源点云和目标点云关键点的预测匹配。然后基于匹配的关键点,采用迭代最近点(ICP)算法实现点云数据的精配准。相较于传统的点对点配准,所
所属分类:
其它
发布日期:2021-02-21
文件大小:14680064
提供者:
weixin_38671819