您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于去噪和重构正则化的生成对抗网络

  2. 本文提出了一种快速,简便的实现方法,该方法利用真实数据的去噪损失和潜在代码的重建损失来处理生成对抗网络(GAN)的训练不稳定性和模式崩溃。 鉴别器从损坏的真实数据中获知的特征被生成器用来恢复真实数据。 由于去噪损失可以估计数据生成密度的局部属性,因此将去噪损失添加到GAN目标函数可以提高生成样本的质量和多样性。 将潜在代码的重建损失添加到生成器中可进一步提高GAN的性能。 因此,发生器的优化信号来自三个方面:标准GAN中的对抗损失,真实数据的去噪损失和潜码的重建损失,这有助于防止无梯度问题。 我
  3. 所属分类:其它

    • 发布日期:2021-03-08
    • 文件大小:1048576
    • 提供者:weixin_38698927