点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于可见近红外光谱比较主成分回归、偏最小二乘回归和反向传播神经网络对土壤氮的预测研究
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于可见近红外光谱比较主成分回归、偏最小二乘回归和反向传播神经网络对土壤氮的预测研究
建模方法是影响可见近红外光谱定量结果的主要因素之一。在470~1000 nm波段的12个土壤剖面对48个剖面样经过风干、研磨、过筛后进行光谱采集。经一阶微分变换及Savizky-Golay平滑处理后,分别应用主成分回归(PCR)、偏最小二乘回归(PLSR)和反向传播神经网络(BPNN)3种方法建立土壤全氮(TN)的定量模型。 PCR与PLSR两线性模型的决定系数(R2)分别为0.74和0.8,其剩余预测偏差(RPD)分别为2.23和2.22,但两模型仅能用于TN的粗略估计。由PCR提供主成分数,
所属分类:
其它
发布日期:2021-02-09
文件大小:1048576
提供者:
weixin_38748875