提出一种基于在线字典学习(ODL)的医学图像特征提取与融合的新算法。首先,采用大小为8像素×8像素的滑动窗处理源图像,得到联合矩阵;通过ODL算法得到该联合矩阵的冗余字典,并利用最小角回归算法(LARS)计算该联合矩阵的稀疏编码;将稀疏编码列向量的1范数作为稀疏编码的活动级测量准则,然后根据活动级最大准则融合稀疏编码;最后根据融合后的稀疏编码和冗余字典重构融合图像。实验图像为20位患者的已配准脑部CT和MR图像,采用5种性能指标评价融合图像的质量,同两种流行的融合算法比较。结果显示,所提出算法的