针对非重叠视角下的行人重识别和高维特征提取等问题,提出基于块稀疏表示的行人重识别方法。采取典型相关分析( CCA) 方法进行特征投影变换,通过提高特征匹配能力来避免高维特征运算引起的维数灾难问题,并在 CCA 转换后的投影空间使投影后查询集行人特征向量与相应的数据集特征向量近似成线性关系; 利用行人数据集的块结构特征构建行人重识别模型,采用交替方向框架求解优化问题; 最后对查询集中要识别的行人采用残差项处理,并将最小残差项所对应的指标作为最终识别的行人记号。在公开数据集 PRID 2011、iL