针对基于原始点对特征的三维目标识别算法中存在的内存浪费、效率不高的问题,提出了一种基于增强型点对特征的三维目标识别算法。通过在原始点对特征的第4个分量上乘以一个符号函数,得到了一种区分性更强的点对特征,消除了原始点对特征存在的二义性。考虑到待识别目标三维模型存在的自遮挡,利用点对之间的视点可见性约束,剔除了目标三维模型哈希表中存在的大量冗余点对,节省了内存开销并提高了三维目标识别算法的识别准确率和效率。在开放数据集和实际采集的数据集上的实验结果表明,与基于原始点对特征的算法相比,所提三维目标识别