在全景图像中,机器人参考定位的路标表观受到畸变、观察视角、路标尺度变化以及环境亮度的影响,致使基于全景视觉的机器人自主定位存在着许多难点有待解决.提出增量式的路标表观学习方法,准确估计路标的表观变化,并为基于粒子滤波的机器人定位过程提供准确的观测信息.增量式路标学习过程利用增量式概率主元分析为理论工具,将不同视角的路标表观的主元特征表示成不断自主更新的特征基底,为计算观测量与路标真实表观的相似度提供了实现途径和理论依据.该学习算法能够被集成到带有重采样的贯序权值采样粒子滤波算法过程中,实现了全景