您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于多尺度注意力网络的行人属性识别算法

  2. 为了提高行人属性识别的准确率,提出了一种基于多尺度注意力网络的行人属性识别算法。为了提高算法的特征表达能力和属性判别能力,首先,在残差网络ResNet50的基础上,增加了自顶向下的特征金字塔和注意力模块,自顶向下的特征金字塔由自底向上提取的视觉特征构建;然后,融合特征金字塔中不同尺度的特征,为每层特征的通道注意力赋予不同的权重。最后,改进了模型损失函数以减弱数据不平衡对属性识别率的影响。在RAP和PA-100K数据集上的实验结果表明,与现有算法相比,本算法对行人属性识别的平均精度、准确度、F1性
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:2097152
    • 提供者:weixin_38678550