针对传统图像去雨算法未考虑多尺度雨条纹及图像去雨后细节信息丢失的问题,提出一种基于多流扩张残差稠密网络的图像去雨算法,利用导向滤波器将图像分解为基础层和细节层。通过直接学习含雨图像细节层和无雨图像细节层的残差来训练网络,缩小映射范围。采用3条带有不同扩张因子的扩张卷积对细节层进行多尺度特征提取,获得更多上下文信息,提取复杂多向的雨线特征;同时,将扩张残差密集块作为网络的参数层,加强特征传播,扩大接受域。在合成图片和真实图片上的实验结果表明,所提算法能有效去除不同密度的雨条纹,并较好地恢复图像细节