您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于多特征卷积神经网络的手写公式符号识别

  2. 提出了基于多特征稠密卷积神经网络的模型框架(DenseNet-SE)。与传统方法相比,DenseNet-SE采用数据驱动的方法,无需手工提取特征。该框架包含了稠密残差块的结构,能够获取深度特征。通过跳跃连接的方式,从浅层获取细粒度特征来辅助深度特征。同时,融合特征有助于网络结构获取更多全局信息,更好地表示公式符号的类别。利用在线手写数学表达式识别的竞赛组织(CROHME)提供的标准数学公式符号库来验证所提算法,结果表明,CROHME2014和CROHME2016的识别率分别达到93.38%和92
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:3145728
    • 提供者:weixin_38597970