您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于多特征融合的卷积神经网络图像去雾算法

  2. 针对传统去雾算法需要人工提取特征,对比度低、信噪比低等问题, 提出一种基于多特征融合的卷积神经网络去雾算法。利用卷积神经网络算法模拟人类视觉系统对雾天图像进行层次化处理, 实现自动提取特征。算法采用直接从雾天图像到清晰无雾图像映射的学习方式, 该映射由特征提取、多尺度特征融合和浅层深层特征融合联合实现。多尺度特征融合提升网络对图像细节的重建, 浅层深层特征融合则将浅层卷积得到的轮廓信息和深层卷积得到的细节信息进行融合, 提升去雾重建的整体效果。实验结果表明, 相比于单一尺度网络, 多特征融合网络
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:10485760
    • 提供者:weixin_38625048
  1. 基于多尺度卷积神经网络的单幅图像去雾方法

  2. 针对传统的单幅图像去雾算法容易受到雾图先验知识制约及颜色失真等问题,提出了一种基于深度学习的多尺度卷积神经网络(CNN)单幅图像去雾方法,即通过学习雾天图像与大气透射率之间的映射关系实现图像去雾。根据大气散射模型形成雾图机理,设计了一个端到端的多尺度全CNN模型,通过卷积层运算提取有雾图像的浅层特征,利用多尺度卷积核并行提取得到有雾图像的深层特征,然后将浅层特征和深层特征进行跳跃连接融合,最后通过非线性回归得到雾图对应的透射率图特征,并根据大气散射模型恢复出无雾图像。采用雾图数据集对该模型进行训
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:12582912
    • 提供者:weixin_38740827